If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16S^2+96S+12
We move all terms to the left:
-(-16S^2+96S+12)=0
We get rid of parentheses
16S^2-96S-12=0
a = 16; b = -96; c = -12;
Δ = b2-4ac
Δ = -962-4·16·(-12)
Δ = 9984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9984}=\sqrt{256*39}=\sqrt{256}*\sqrt{39}=16\sqrt{39}$$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{39}}{2*16}=\frac{96-16\sqrt{39}}{32} $$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{39}}{2*16}=\frac{96+16\sqrt{39}}{32} $
| 88/4-2x=1 | | 3e=4e-+4 | | 5x+16=-5x+16 | | (1/9)^x=243^4/5 | | 8k-24=16 | | (1/9)^x=243^5/4 | | 4x+8=-x-9 | | 9x-3=-10x+2 | | 2a-6=2(3a+7) | | 5x+9=-5x+4 | | 7+2y=12+2-7y | | 18p+12=48 | | 5x-1=-2x-6 | | 3x^-x^=1800 | | 2p+1/9=p+6/10 | | 64.4-3.6e=32 | | 7x+4=-4+11 | | -6=2x(-3) | | 3y+19=4y+14 | | 9^(6x)=5 | | 21+2x=26 | | 5x+36=4(x+9) | | 2(-6.4+w)=33.46 | | 2a-5=5a-17 | | 3x+10=4x-1/2 | | (4w+36)(w^2-w-2)=0 | | 8/9x+12=2/9x+34 | | 2/3/t=8 | | 9x-4=6x-37 | | (x-3/4)-1=(x-9/5) | | 54/2x=3x | | (x-5/4)-1=(x-11/5) |